skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whittington, Alan G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that recalescence, or spontaneous reheating of a cooling material due to rapid release of latent heat, can occur during disequilibrium crystallization of depolymerized Mg-rich melts. This can only happen at fast cooling rates, where the melt becomes undercooled by tens to hundreds of degrees before crystallization begins. Using a forward-looking infrared (FLIR) camera, we documented recalescence in pyroxene (Fe, Mg)SiO3 and komatiite lavas that initially cooled at 25–50 °C s–1. Local heating at the crystallization front exceeds 150 °C for the pyroxene and 10 °C for komatiite and lasts for several seconds as the crystallization front migrates through. We determined the latent heat release by differential scanning calorimetry to be 440 J g–1 for pyroxene and 275 J g–1 for komatiite with a brief power output of ∼100 W g–1 or ∼300 MW m–3. Recalescence may be a widespread process in the solar system, particularly in lava fountains, and cooling histories of mafic pyroclasts should not be assumed a priori to be monotonic. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)